학생자율세미나 강의계획서

	(국문) 복잡계의 관점에서의 뇌 네트워크 이해
1. 세미나명	(영문) Understanding the Brain as a Complex System
2. 세미나 일정,	- 세미나 일정 : 화요일 17시~20시
세미나 장소	- 세미나 장소 : 500동 304호
3. 강좌 키워드	- 복잡계, 네트워크, 이론 뇌과학, 정보 이론, 신경 가소성
4. 세미나 목표	세미나의 목적은 복잡계 관점으로 뇌 네트워크를 이해하는 방식을 전달하는 데에 있다. 이는 두 가지 구체적인 목표로 나뉜다. 첫째, 뇌를 영역으로 나눠서 환원주의적으로 이해하려는 경향이 다수에게 무의식적으로 내면화되어 있음을 보이고, 그 관점의 한계가 무엇인지 전달하는 것이다. 뇌의 영역에 익숙하지 않은 수강생을 위해 대표적인 영역들과 연구 사례를 소개함으로써 두 관점을 비교하고, 복잡계 관점이 필요한 이유를 설득하고자 한다. 둘째, 뇌를 복잡계 네트워크로 수학적 모델링 한 내용을 전달하는 것이다. 정보 이론, 네트워크 모델, 가소성 법칙, 지도 및 비지도 학습 등의 내용을 다루면서 복잡계 관점을 구체적으로 활용하고자 한다. 또, 이러한 신경망 모델이 인공지능 알고리즘과 어떻게
	연관되는지 살펴보는 것이 목표다. Pessoa, L. (2022). The Entangled Brain: How Perception, Cognition, and
5. 교재	Emotion Are Woven Together, United States: MIT Press.
	Abbott, L. F., Dayan, P. (2005). Theoretical Neuroscience: Computational and
	Mathematical Modeling of Neural Systems. United States: MIT Press.
 6. 참고문헌	- Mathematical Modelling of Nedral Systems, Officed States, Mil Fress,
V. 642	1) 세미나 주제
	본 세미나는 뇌에 관하여 복잡계의 관점으로 사고하는 방법을 학습하기 위한 목적으로 개발하였다. 고등학교 생명 과학 및 교양 생물학 과목에서 뇌를 이해할 때, 뇌의 영역을 구분하고 각 영역을 독립적인 대상으로 바라보는 관점이 당연하게 여겨진다. 이런 사고방식은 뇌의 구조를 효율적으로 학습할 수 있어서 유용하지만, 뇌 네트워크의 복잡성을 단순화하여 뇌를 '부분의 합'으로 환원시키는 측면에서 문제가 있다. 이를 해결하기 위해 뇌를 복잡하게 얽혀있는 계로 바라보는 관점을 전달하는 목적의 세미나를 계획하게 되었다.
7. 강의계획	2) 세미나 내용(주요 개념, 특징 및 의의) 세미나의 주제는 '복잡계의 관점에서 뇌 네트워크 이해하기'이다. 세미나를 통해소개하고자 하는 주요 개념은 뇌의 해부학(피질, 피질하, 신경세포, 기능주의 등), minimal brain(방어 및 보상 추구)의 개념, 복잡계, 네트워크, 뉴런 모델, 신경망 모델, 학습 및 기억 모델, 정보 이론이 있다. 세미나의 내용은 대부분 교양 과학 서적, < <the brain="" entangled="">>과 전공 서적, <<theoretical neuroscience="">>를 참고하여 진행할 계획이다. 복잡계의 관점을 적용할수 있는 부분에 주목하여 뇌과학에 대한 선행지식 없이도 이해할 수 있는 수준으로 내용을 구성할 것이다. 본 세미나는 뇌의 생물학적 특징 뿐 만 아니라 이를 하나의 복잡한 네트워크로 바라보는 방법을 알아가며 강의를 듣는 학생들에게 뇌에 대한 새로운 관점을 심어줄 수 있을 것으로 기대된다. 또한, 복잡계와 네트워크에 대한 이해는 뇌뿐만 아니라 다양한 분야에 적용될 수 있을 것으로 기대된다.</theoretical></the>

3) 세미나 진행방식

세미나는 이론 강의 형식을 바탕으로 한다. 개설 학생은 미리 책을 읽을 것을 권장하며 매주 이론 수업 이후 토의를 통해 다양한 아이디어를 수합하고 수업이 끝난 후 간단한 퀴즈나 서술형 제시를 통해 수강생의 이해를 평가한다.

4) 세미나 진행일정

1주차(9월 5일) - 강의주제: OT 및 뇌의 해부학적 구조 이해

- 강의진행 및 활동: **세미나의 전체적인 흐름을 소개하고 뇌의 해부학적 구조에 대해 간** 단하게 이해해본다.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.2
- 대학원생 연구지원조교 참여

2주차(9월 12일) - 강의주제: The minimal brain

- 강의진행 및 활동: 뇌의 input과 output 회로를 minimal brain 개념을 통해 이해한다.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.3
- 지도교수, 대학원생 연구지원조교 참여

3주차(9월 19일) - 강의주제: 뇌 영역의 기능과 복잡계

- 강의진행 및 활동: 뇌의 영역별 기능을 탐구하고 복잡계의 개념에 대해 학습한다.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.4
- 대학원생 연구지원조교 참여

4주차(9월 26일) - 강의주제: **인식과 뇌 네트워크**

- 강의진행 및 활동: 전두엽 피질에서 일어나는 인식에 대해 탐구하고 뇌네트워크 분석 기법에 대해 학습한다. 이와 관련된 다양한 인지 실험을 실시한다.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.7, <<Theoretical Neuroscience>> Ch.7
- 대학원생 연구지원조교 참여

5주차(10월 3일) - 강의주제: 뇌 네트워크의 특징

- 강의진행 및 활동: **뇌 네트워크의 다양한 특징에 대해 학습한다**.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.10
- 대학원생 연구지원조교 참여

6주차(10월 24일) - 강의주제: **뇌 과학의 관점에서 바라본 공포 + 중간 정리**

- 강의진행 및 활동: **뇌 과학의 관점에서 바라본 공포에 대해 학습하고 그 간 학습한 내용을 정리한다**.
- 필독자료 및 과제: <<The Entangled Brain>> Ch.11-12
- 지도교수, 대학원생 연구지원조교 참여

7주차(10월 31일) - 강의주제: 엔트로피와 상호의존정보

- 강의진행 및 활동: 엔트로피와 상호의존정보에 대해 간단하게 학습한다.
- 필독자료 및 과제: <<Theoretical Neuroscience>> Ch.4
- 대학원생 연구지원조교 참여

8주차(11월 7일) - 강의주제: **스파이크 트레인**

- 강의진행 및 활동: 스파이크 트레인(Spike Train)에서 엔트로피의 활용 방법을 학습한

다.

- 필독자료 및 과제: <<Theoretical Neuroscience>> Ch.4
- 대학원생 연구지원조교 참여

9주차(11월 14일) - 강의주제: **비지도 학습과 지도 학습**

- 강의진행 및 활동: 가소성 규칙(Hebb rule)의 정규화 방법을 학습하고 비지도 학습의 맥락에서 그 성질을 살펴본다. 이진 분류, 함수 근사를 위한 학습 규칙들, 경사 하강법, 확률 분포 추정 등을 학습한다.
- 필독자료 및 과제: <<Theoretical Neuroscience>> Ch.8

10주차(11월 21일) - 강의주제: 수강생 자율 발표

- 강의진행 및 활동: 수업 내용 중 수강생들 개인이 가장 인상 깊었던 부분을 더 탐구하여 발표를 진행한다.
- 필독자료 및 과제: <<Theoretical Neuroscience>>, <<The Entangled Brain>>
- 지도교수, 대학원생 연구지원조교 참여

5) 과제 및 세미나 결과물

1~6차시는 개념적 이해가 중요하므로 수업 마지막에 o/x 퀴즈를 보는 방식으로 이해도를 평가하고, 7~9차시는 수학적 이해를 평가하기 위해 발표자가 출제한 수학 문제를 과제로 제시하고, 고민 여부를 평가한다.

10주차에는 수강생들의 개인 발표를 진행한다.

6) 기타 안내사항

- 출석 : 10%

8. 평가방법

- 과제 : 30% 매 수업시간 퀴즈 - 최종 : 50% 개인 발표 1회

- 태도 : 10%